

0.5-12 GHz Low Noise Gallium Arsenide FET

Technical Data

ATF-10136

Features

- Low Noise Figure: 0.5 dB Typical at 4 GHz
- **Low Bias:** V_{DS} = 2 V, I_{DS} = 20 mA
- **High Associated Gain:** 13.0 dB Typical at 4 GHz
- **High Output Power:** 20.0 dBm Typical P_{1 dB} at 4 GHz
- Cost Effective Ceramic Microstrip Package
- Tape-and Reel Packaging Option Available [1]

Description

The ATF-10136 is a high performance gallium arsenide Schottky-barriergate field effect transistor housed in a cost effective microstrip package. Its premium noise figure makes this device appropriate for use in the first stage of low noise amplifiers operating in the 0.5-12 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length using airbridge interconnects between drain fingers. Total gate periphery is 500 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

36 micro-X Package

Electrical Specifications, $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
NFo	Optimum Noise Figure: $V_{DS} = 2 \text{ V}$, $I_{DS} = 25 \text{ mA}$	f = 2.0 GHz	dB		0.4	
		f = 4.0 GHz	dB		0.5	0.6
		f = 6.0 GHz	dB		0.8	
G_{A}	Gain @ NF _O ; $V_{DS} = 2 \text{ V}$, $I_{DS} = 25 \text{ mA}$	f = 2.0 GHz	dB		16.5	
		f = 4.0 GHz	dB	12.0	13.0	
		f = 6.0 GHz	dB		11.0	
P _{1 dB}	Power Output @ 1 dB Gain Compression	f = 4.0 GHz	dBm		20.0	
	$V_{DS} = 4 \text{ V}, I_{DS} = 70 \text{ mA}$					
$G_{1 dB}$	1 dB Compressed Gain: V_{DS} = 4 V, I_{DS} = 70 mA	f = 4.0 GHz	dB		12.0	
g _m	Transconductance: $V_{DS} = 2 V$, $V_{GS} = 0 V$		mmho	70	140	
I _{DSS}	Saturated Drain Current: $V_{DS} = 2 V$, $V_{GS} = 0 V$		mA	70	130	180
V_{P}	Pinchoff Voltage: $V_{DS} = 2 \text{ V}$, $I_{DS} = 1 \text{ mA}$		V	-4.0	-1.3	-0.5

Note:

1. Refer to PACKAGING section "Tape-and-Reel Packaging for Surface Mount Semiconductors."

ATF-10136 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V_{DS}	Drain-Source Voltage	V	+5
V_{GS}	Gate-Source Voltage	V	-4
$V_{ m GD}$	Gate-Drain Voltage	V	-7
I _{DS}	Drain Current	mA	I_{DSS}
P_{T}	Power Dissipation [2,3]	mW	430
T _{CH}	Channel Temperature	°C	175
T _{STG}	Storage Temperature ^[4]	°C	-65 to +175

Part Number Ordering Information

	Part Number	Devices Per Reel	Reel Size
ATF-10136-TR1		1000	7"
	ATF-10136-STR	10	STRIP

For more information, see "Tape and Reel Packaging for Semiconductor Devices."

ATF-10136 Noise Parameters: $V_{DS} = 2 \text{ V}, I_{DS} = 25 \text{ mA}$

Freq.	NFo	Γ	D /50	
GHz	dB	Mag	Ang	R _N /50
0.5	0.35	0.93	12	0.80
1.0	0.4	0.85	24	0.70
2.0	0.4	0.70	47	0.46
4.0	0.5	0.39	126	0.36
6.0	0.8	0.36	-170	0.12
8.0	1.1	0.45	-100	0.38

ATF-10136 Typical Performance, $T_A = 25^{\circ}C$

Figure 1. Optimum Noise Figure and Associated Gain vs. Frequency. $V_{DS}=2\ V,\ I_{DS}=25\ mA,\ T_A=25^{\circ}C.$

Figure 2. Optimum Noise Figure and Associated Gain vs. I_{DS} . $V_{DS} = 2 \text{ V}, \text{ f} = 4.0 \text{ GHz}.$

Notes:

- Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE\ TEMPERATURE} = 25^{\circ}C$.
- 3. Derate at 2.9 mW/°C for $T_{CASE} > 25$ °C.
- 4. Storage above +150°C may tarnish the leads of this package making it difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See APPLICATIONS PRIMER IIIA for more information.

 $\label{eq:Figure 3. Insertion Power Gain,} Maximum Available Gain and Maximum Stable Gain vs. Frequency. \\ V_{DS} = 2~V,~I_{DS} = 25~mA.$

 $\textbf{Typical Scattering Parameters,} \ \ \text{Common Source,} \ \ Z_O = 50 \ \Omega, \ T_A = 25^{\circ}\text{C}, \ V_{DS} = 2 \ \text{V}, \ I_{DS} = 25 \ \text{mA}$

Freq.	S ₁₁			S ₂₁			S ₁₂		S	22
MHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.98	-18	14.5	5.32	163	-34.0	.020	78	.35	-9
1.0	.93	-33	14.3	5.19	147	-28.4	.038	67	.36	-19
2.0	.79	-66	13.3	4.64	113	-22.6	.074	59	.30	-31
3.0	.64	-94	12.2	4.07	87	-19.2	.110	44	.27	-42
4.0	.54	-120	11.1	3.60	61	-17.3	.137	31	.22	-49
5.0	.47	-155	10.1	3.20	37	-15.5	.167	13	.16	-54
6.0	.45	162	9.2	2.88	13	-14.3	.193	-2	.08	-17
7.0	.50	120	8.0	2.51	-10	-13.9	.203	-19	.16	45
8.0	.60	87	6.4	2.09	-32	-13.6	.210	-36	.32	48
9.0	.68	61	4.9	1.75	-51	-13.6	.209	-46	.44	38
10.0	.73	42	3.6	1.52	-66	-13.7	.207	-58	.51	34
11.0	.77	26	2.0	1.26	-82	-13.8	.205	-73	.54	27
12.0	.80	14	1.0	1.12	-97	-14.0	.200	-82	.54	15

36 micro-X Package Dimensions

Notes:

0.56 (0.022)

Dimensions are in millimeters (inches)
 Tolerances: in .xxx = ± 0.005

 $\begin{array}{c} \textbf{4.57} \pm \textbf{0.25} \\ \textbf{0.180} \pm \textbf{0.010} \end{array}$

mm .xx = \pm 0.13

